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Interior stagnation-point flows of viscoelastic liquids arise in a wide variety of applica-
tions including extensional viscometry, polymer processing and microfluidics. Experi-
mentally, these flows have long been known to exhibit instabilities, but the mechanisms
underlying them have not previously been elucidated. We computationally demon-
strate the existence of a supercritical oscillatory instability of low-Reynolds-number
viscoelastic flow in a two-dimensional cross-slot geometry. The fluctuations are closely
associated with the ‘birefringent strand’ of highly stretched polymer chains associated
with the outflow from the stagnation point at high Weissenberg number. Additionally,
we describe the mechanism of instability, which arises from the coupling of flow with
extensional stresses and their steep gradients in the stagnation-point region.

1. Introduction
While Newtonian flows become unstable only at high Reynolds number Re, when

the inertial terms in momentum balance dominate, flows of viscoelastic fluids such as
polymer solutions and melts are known to have interesting instabilities and nonlinear
dynamical behaviours even at extremely low Re. These ‘purely elastic’ instabilities
arise in rheometry of complex fluids as well as in many applications (Larson 1992;
Shaqfeh 1996). Recent studies of viscoelastic flows in microfluidic devices broaden the
scope of these nonlinear dynamical problems of viscoelastic flows (Squires & Quake
2005). The small length scales in microfluidic devices enable large shear rates, and
thus high Wi (Weissenberg number, Wi ≡ λγ̇ , where λ is a characteristic time scale of
the fluid and γ̇ is a characteristic shear rate of the flow), at very low Re. Instabilities
are not always undesirable, especially when the accompanying flow modification is
controllable and can thus be used in the design and operation of microfluidic devices.
Specifically, instabilities have been found and flow-controlling logic elements have
been designed in a series of microfluidic geometries, e.g. flow rectifier with anisotropic
resistance (Groisman & Quake 2004), flip–flop memory (Groisman, Enzelberger &
Quake 2003) and nonlinear flow resistance (Groisman et al. 2003). Another prospective
application of these instabilities is to the enhancement of mixing at lab-on-a-chip
length scales (Groisman & Steinberg 2001), where turbulent mixing is absent owing
to small length scales and an alternative is required.

The best understood of these instabilities are those that occur in viscometric flows
with curved streamlines: e.g. flows in Taylor–Couette (Muller, Shaqfeh & Larson
1989), Taylor–Dean (Joo & Shaqfeh 1994), cone-and-plate (Magda & Larson 1988)
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Figure 1. Schematic of the cross-slot flow geometry.

and parallel-plates (Groisman & Steinberg 2000; Magda & Larson 1988) flow
geometries. In these geometries, the primary source of instability is the coupling
of normal stresses with streamline curvature (i.e. the presence of ‘hoop stresses’),
leading to radial compressive forces that can drive instabilities (Magda & Larson
1988; Muller et al. 1989; Larson, Muller & Shaqfeh 1990; Joo & Shaqfeh 1994;
Pakdel & McKinley 1996; Shaqfeh 1996; Graham 1998). Similar mechanisms drive
instabilities in viscoelastic free-surface flows (Spiegelberg & McKinley 1996; Graham
2003).

Attention in this paper focuses on a different class of flows, whose instabilities are
not well-understood – stagnation-point flows, such as those generated with opposed-
jet (Chow et al. 1988; Müller, Odell & Keller 1988), cross-slot (Arratia et al. 2006),
two-roll mill (Ng & Leal 1993) and four-roll mill (Ng & Leal 1993; Broadbent,
Pountney & Walters 1978) devices. Figure 1 shows a schematic of a cross-slot
geometry. A characteristic phenomenon in these stagnation-point flows is the
formation of a narrow region of fluid with high polymer stress extending downstream
from the stagnation point. This region can be observed in optical experiments as
a bright birefringent ‘strand’ with the rest of the fluid dark (Harlen, Rallison &
Chilcott 1990). Keller and coworkers (Chow et al. 1988; Müller et al. 1988) reported
instabilities in stagnation-point flows of semi-dilute polymer solutions generated
by an axisymmetric opposed-jet device. Specifically, for a fixed polymer species
and concentration, upon a critical extension rate (or critical Wi) polymer chains
become stretched by flow near the stagnation point and a sharp uniform birefringent
stand forms. The width of this birefringent strand increases with increasing Wi
until a stability limit is reached, beyond which the birefringent strand becomes
destabilized, and changes in its morphology are observed. At higher Wi, the flow
pattern and birefringent strand become time-dependent. Tracer and particle-tracking
experiments of stagnation point flow in a micro-fabricated cross-slot geometry by
Arratia et al. (2006) show instabilities of dilute polymer solution at low Re (< 10−2).
In their experiments, fluid from one of the two incoming channels is dyed and a
sharp and flat interface between dyed and undyed fluids is observed at low Wi.
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Upon an onset value of Wi, this flow pattern loses its stability: spatial symmetry is
broken, but the flow remains steady. The interface becomes distorted in such a way
that more than half of the dyed fluid goes to one of the outgoing channels while
more undyed fluid travels through the other. At even higher Wi, the flow becomes
time-dependent and the direction of asymmetry flips between two outgoing channels
with time. Particle-tracking images in the time-dependent flow pattern indicate the
existence of vortical structures around the stagnation point.

Another class of stagnation-point flows is associated with liquid–solid or liquid–gas
interfaces, such as flows passing submerged solid obstacles, around moving bubbles or
toward a free surface. For example, McKinley, Armstrong & Brown (1993) reported
three-dimensional steady cellular disturbances in the wake of a cylinder submerged
in a viscoelastic fluid. Around a falling sphere in viscoelastic fluids, the fore-and-aft
symmetry of the velocity field is broken and the velocity perturbation in the wake
can be away from the sphere, toward the sphere or a combination of the two,
depending on the polymer solution (Hassager 1979; Bisgaard & Hassager 1982;
Bisgaard 1983).

Remmelgas, Singh & Leal (1999) computationally studied the stagnation-point flow
in a cross-slot geometry with two different FENE (finitely extensible nonlinear elastic)
dumbbell models. Using the two models, they studied the effects of configuration-
dependent friction coefficient on polymer relaxation and the shape of the birefringent
strand. Their simulation approach was restricted to relatively low Wi (∼O(1)) with
symmetry imposed on the centrelines of all channels. Harlen (2002) conducted
simulations of a sedimenting sphere in a viscoelastic fluid to explore the wake
behaviours. He explains the experimental observations of both negative (velocity
perturbation away from the sphere) and extended (velocity perturbation toward the
sphere) wakes in terms of combined effects of the stretched polymer in the birefringent
strand following the stagnation point behind the sphere and the recoil outside of the
strand. Neither of these analyses directly addressed instabilities of these flows. In Poole,
Alves & Oliveira (2007), a stationary symmetry-breaking instability in the cross-slot
geometry has been predicted by conducting simulations using the upper-convected
Maxwell model. This instability is similar to the first steady symmetry-breaking
instability in the experiments of Arratia et al. (2006). However, the question as to why
the flow field becomes time-dependent in different geometries involving stagnation
points still needs to be addressed.

Various approximate approaches have been taken in the past to obtain an
understanding of the instabilities observed in experiments. Harris & Rallison (1993,
1994) investigated the instabilities of the birefringent strand downstream of a free
isolated stagnation point through a simplified approach, in which polymer molecules
are modelled as linear-locked dumbbells, which are fully stretched within a thin
strand lying along the centreline. Polymer molecules contribute a normal stress
proportional to the extension rate only when they are fully stretched (i.e. in the
strand); otherwise, the flow is treated as Newtonian. The lubrication approximation
is applied for the Newtonian region and the effects of the birefringent strand are
coupled into the problem through point forces along the strand. Two instabilities are
reported. At low Wi (≈1.2 − 1.7), a varicose disturbance is linearly unstable, in which
the width of the birefringent strand oscillates without breaking the symmetry of the
flow pattern. At higher Wi, another instability is observed in which symmetry with
respect to the extension axis breaks and the birefringent strand becomes sinuous in
shape and oscillatory with time, with zero displacement at the stagnation point and
increasing magnitude of displacement downstream from it. Symmetry with respect to
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the inflow axis is always imposed. The mechanism of these instabilities is explained:
perturbations in the shape or position of the birefringent strand affect the stretching
of incoming polymer molecules such that they enhance the perturbation after they
become fully stretched and merge into the strand. This mechanism is close to the one
that we present later in this paper with regard to the importance of flow kinematics
and the extensional stress. However, in their linear stability analysis with which the
instability mechanism is investigated, the spatial dependence of the birefringent strand
in the outflow direction is neglected. Therefore, although this factor is included in
their numerical simulation, it is not taken into consideration in their explanation
of the instability. As will be shown later, according to our simulations, this spatial
dependence of the birefringent strand plays an important role.

In this paper, we present numerical simulation results of viscoelastic stagnation
point flow in a two-dimensional cross-slot geometry. With increasing Wi, we observe
the formation and elongation of the birefringent strand across the stagnation point.
At high Wi, we find the occurrence of an oscillatory instability. These results resemble
the experimental observations of oscillatory birefringent width by Müller et al. (1988)
and the varicose instability predicted by Harris & Rallison (1994). By analysing the
perturbations in both velocity and stress fields, a novel instability mechanism based
on normal stress effects and flow kinematics is identified.

2. Formulation and methods
We consider a fourfold symmetric planar cross-slot geometry, as shown in figure 1.

Flow enters from top and bottom and leaves from left and right. For laminar
Newtonian flow, two incoming streams meet at the intersection of the cross and each
of them splits evenly and goes into both outgoing channels, generating a stagnation
point at the origin near which an extensional flow exists. We use round corners at
the intersections of channel walls in order to avoid enormous stress gradients at the
corners, which cause numerical difficulties.

The momentum and mass balances are:

Re

(
∂u
∂t

+ u · ∇u

)
= −∇p + β∇2u + (1 − β)

2

Wi
(∇ · τp), (2.1)

∇ · u = 0. (2.2)

Parameters in (2.1) and (2.2) are defined as: Re ≡ ρUl/
(
ηs + ηp

)
, Wi ≡ 2λU/l and

β ≡ ηs/
(
ηs + ηp

)
, where ρ is the fluid density, for a dilute polymer solution we

assume it to be the same as the solvent density; ηs is the solvent viscosity and ηp

is the polymer contribution to the shear viscosity at zero shear rate and U and l

are characteristic velocity and length scales of the flow. Here, l is chosen to be the
half-channel width and the definition of U is based on the pressure drop applied
between the entrances and exits of the channel. Specifically, U is defined to be the
centreline velocity of a Newtonian plane Poiseuille flow under the same pressure
drop in a straight channel with length 20l, which is comparable to the lengths of
streamlines in the present geometry. According to this definition, the non-dimensional
pressure drop in our simulation is fixed at 40 and the centreline Newtonian velocity
in cross-slot geometry is typically slightly lower than 1 since the extensional flow
near the stagnation point has a higher resistance than that in a straight channel. The
polymer contribution to the stress tensor is denoted τp and is calculated with the
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FENE-P constitutive equation (Bird et al. 1987):

α

1 − tr(α)/b
+

Wi

2

(
∂α

∂t
+ u · ∇α − α · ∇u − (α · ∇u)T

)
=

(
b

b + 2

)
δ, (2.3)

τp =
b + 5

b

(
α

1 − tr(α)/b
−

(
1 − 2

b + 2

)
δ

)
. (2.4)

In (2.3) and (2.4), polymer chains are modelled as FENE dumbbells (two beads
connected by a finitely-extensible-nonlinear-elastic spring). Here, α ≡ 〈 QQ〉 is the con-
formation tensor of the dumbbells where Q is the end-to-end vector of the dumbbells
and 〈·〉 represents an ensemble average. The parameter b determines the maximum
extension of the dumbbells: i.e. the upper limit of tr(α).

At the entrances and exits of the flow geometry, normal flow boundary conditions
are applied: i.e. t · u = 0 where t is the unit vector tangential to the boundary. Pressure
is set to be 40 at entrances and 0 at exits. No-slip boundary conditions are applied
at all other boundaries. Boundary conditions for stress are only required at the
entrances, where the profile of α is set to be the same as that for a fully developed
pressure-driven flow in a straight channel with the same Wi. Unless otherwise noted,
several parameters are fixed for most of the results we report here: Re =0.1, β = 0.95
and b = 1000, which means we focus on dilute solutions of long-chain polymers at
low Reynolds number.

The discrete elastic stress splitting (DEVSS) formulation (Baaijens et al. 1997;
Baaijens 1998) is applied in our simulation: i.e. a new variable Λ is introduced as the
rate of strain and a new equation is added into the equation system:

Λ = ∇u + ∇uT . (2.5)

A numerical stabilization term γ ∇ · (∇u + ∇uT − Λ) is added to the right-hand
side of the momentum balance (equation (2.1)) and it is worth pointing out that
this term is only non-trivial in the discretized formulation and does not change the
physical problem. In this term, γ is an adjustable parameter and γ =1.0 is used in our
simulations. The velocity field u is interpolated with quadratic elements while pressure
p, polymer conformation tensor α and rate of strain Λ are interpolated with linear
elements. Consistent with Baaijens’s (1998) conclusion, DEVSS greatly increases the
upper limit of Wi achievable in our simulations. Quadrilateral elements are used for
all variables. Our experience shows that quadrilateral elements have great advantages
over triangular ones, yielding much better spatial smoothness in the stress field at
comparable degrees of freedom to be solved. Another merit of quadrilateral elements
is the capability of manual control over mesh grids. This is extremely important
when certain restrictions, such as symmetry, are required. In our simulation, finer
meshes are used within and around the intersection region of the geometry and the
mesh is required to be symmetric with respect to both axes. Within a horizontal
band (−0.2 <y < 0.2) across the stagnation point, very fine meshes are generated
to capture the sharp stress gradient along the birefringent strand. The streamline
upwind/Petrov–Galerkin method (SUPG) (Brooks & Hughes 1982) is applied in (2.3)
by replacing the usual Galerkin weighting function w with w + δhu · ∇w/||u||, where
h is the geometric average of the local mesh length scales and δ is an adjustable
parameter, set to δ = 0.3 in our simulations. This formulation is implemented using
the commercially available COMSOL Multiphysics software.
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Figure 2. Contour plots of steady-state solution: Wi=0.2 (only the central part of the flow
domain is shown).

3. Results and discussion
3.1. Steady states

Steady-state solutions are found for all Wi investigated (0.2 <Wi < 100) in our study.
For Wi � 60, steady states are found by time integration and for those with larger
Wi, Newton iteration (parameter continuation) is used because of possible loss of
stability, as we describe below. At low Wi, the velocity field is virtually unaffected by
the polymer molecules. Velocity contours at Wi= 0.2 are plotted in figure 2(a); for
clarity, only part of the channel is shown. A stagnation point is found at the centre
of the domain ((0, 0)). In both incoming and outgoing channels, the flow is almost
the same as pressure-driven flow in a straight channel. No distinct difference can be
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Figure 3. Contour plots of steady state solution: Wi= 50 (only the central part of the flow
domain is shown).

observed for the incoming and outgoing directions in velocity field. figure 2(b) shows
contours of extension rate at Wi =0.2, in which a region dominated by extensional
flow is found near the stagnation point. A high extension rate is also found near
the corners owing to the no-slip walls. The magnitude of polymer stretching can be
measured by the trace of its conformation tensor tr(α), and is plotted in figure 2(c).
At low Wi, the extent to which polymers are deformed is barely noticeable, but it can
be clearly seen that polymers are primarily stretched in either the extensional flow
near the stagnation point and corners or the shear flows near the walls. At high Wi
(Wi = 50, figure 3), the situation is very different. Polymers are strongly stretched by
the extensional flow near the stagnation point and this stretching effect by extensional
flow overwhelms that of the shear flow. A distinct band of highly stretched polymers
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Figure 5. Profile of tr(α) along x = 0 in the region very near the stagnation point.

(the birefringent strand) forms (figure 3c). Since the polymer relaxation time in this
case is larger than the flow convection time from the stagnation point to the exits,
this birefringent strand extends the whole length of the simulation domain. The
resulting high polymer stress significantly affects the velocity field (figure 3a). Regions
with reduced velocity extend much farther away in the downstream directions of the
stagnation point than in the low Wi case, especially along the x-axis, where high
polymer stress dominates. Correspondingly, a reduction in the extension rate near the
stagnation point is observed, most noticeably along the birefringent strand (figure 3b).

Figures 4 and 5 show profiles at various values of Wi of tr(α) along the outflow (x-
axis) and inflow (y-axis) directions of this stagnation point (note the difference in scales
in the two plots). For increasing Wi, the length of the region with highly stretched
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Figure 6. Birefringent strand width W ; inset: Birefringent strand length L (tr(α) > 300 is
considered as the observable birefringence region).

polymer keeps increasing owing to the increased relative relaxation time (figure 4). In
high Wi cases (Wi= 30 and Wi= 100), polymers are not fully relaxed even when they
reach the exit of the simulation domain. The cross-sectional view of the tr(α) profile
along the y-axis (figure 5) shows interesting non-monotonic behaviours. Although the
height of the profile (tr(α)max ) keeps increasing on increasing Wi, the width of the
Wi =100 case is smaller than that of Wi =30, resulting in a steeper transition section
between low and high stretching regions. If we arbitrarily define tr(α) > 300 as the
observable birefringence region, the width W and the length L of the birefringent
strand (measured on the inflow and outflow axes, respectively) can be plotted as
functions of Wi, as in figure 6 (values of L for Wi > 30 are not shown since they
exceed the length of the simulation domain). A clear non-monotonic trend is observed
in the plot of birefringence width, where W increases sharply at relatively low Wi, and
peaks around Wi= 40. After that, W decreases mildly, but consistently, with further
higher Wi. This non-monotonic trend is consistent with experimental observations of
birefringence in opposed-jet devices (Müller et al. 1988).

Similarly, a non-monotonicity is also found in the change of velocity field with
Wi. Shown in figure 7 is the value of extension rate, averaged within a box around
the stagnation point (−0.1 < x < 0.1, −0.1 <y < 0.1), as a function of Wi. As Wi
increases, the extension rate decreases at low Wi, but increases at high Wi, with a
minimum found around Wi= 40. Besides, most of experimental results are presented
in terms of Deborah number (De), defined as the product of the polymer relaxation
time and an estimate of the extension rate near the stagnation point. Noticing
that the average (non-dimensionlized) extension rate changes within a very narrow
range (around 0.55–0.6), a conversion De = 0.3Wi can be adopted for comparison of
our results with experimental ones.

Some understanding of this non-monotonicity can be gained by looking at figure 4.
Here it can be seen that for Wi � 30, the birefringent strand is not yet ‘fully developed’
in the sense that the polymer stretching is not yet saturating near full extension. Thus,
the evolution of the velocity field in this regime of Wi reflects the significant changes
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Figure 7. Average extension rate (∂ux/∂x)avg (averages taken in the domain
−0.1 <x < 0.1, −0.1 < y < 0.1).

that occur in the stress field in this regime. At higher Wi, however, the polymer stress
field in the strand is saturating, and thus not changing significantly. Furthermore, at
these high Weissenberg numbers, the relaxation of stress downstream of the stagnation
point diminishes, decreasing the gradient ∂τxx/∂x and thus decreasing the effect of
viscoelasticity on the flow near the stagnation point.

3.2. Periodic orbits

We turn now to the stability of the steady states that have just been described. Rather
than attempting to compute the eigenspectra of the linearization of the problem,
an exceedingly demanding task, we examine stability by direct time integration of
perturbed steady states. The perturbations take the form of slightly asymmetric
pressure profiles at the two entrances (0.1 % maximum deviation from the steady-
state value) that are applied for one time unit, then released. As an example, figure 8
shows a two-dimensional projection of the trajectory of the system evolution over
time at Wi= 66. Here, the velocity magnitude at a point near the stagnation point
((0.5, 0)) is plotted against the birefringent strand width W measured on the inflow
axis. The system starts at the steady-state with W = 0.1593 and ‖u‖(0.5,0) = 0.2687 and
spirals outward with time after the perturbation. Eventually, the trajectory merges
into a cycle (the outer dark cycle in the figure 8). This clearly identifies the existence of
a stable periodic orbit. Note the anticorrelation between ‖u‖ and W , i.e. when the flow
speeds up near the stagnation point, the strand thins and vice versa. Although a finite
asymmetric perturbation has been introduced in the simulation results presented here,
it is worth mentioning that in order to trigger the instability, the initial perturbation
does not have to be in this particular form, nor does it have a finite threshold.
We have tested another form of perturbation in which we add zero-mean random
noises of different orders-of-magnitude onto the initial steady-state solutions and the
instability can always be observed.

Figure 9 shows the root-mean-square deviations over one period of W from its
steady-state values, normalized by the corresponding steady-state values Ws .s ., as a
function of Wi for all the cases where we found periodic orbits. Time integrations
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for Wi > 74 did not converge owing to the enormous stress gradient around the
corners of the no-slip walls and the consequent numerical oscillations downstream.
Data points for Wrms computed from our simulations are fitted with a function
of the form a(Wi − Wic)

c, with c fixed at 1/2. Very good agreement is found for
our simulation data with the 1/2 power law, characteristic of a supercritical Hopf
bifurcation (Guckenheimer & Holmes 1983). The critical Weissenberg number Wic is
identified as 64.99 by this fitting. Also shown in figure 9 are periods of oscillations,
where a slight decrease with increasing Wi is found. This indicates that some time
scale other than the polymer relaxation time sets the period of oscillations.
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Simulations have also been conducted at other values of β and b. Within the dilute
regime, Wic has a strong dependence on the polymer concentration (∝ (1 − β)) and
the bifurcation occurs at much higher Wi for more dilute solutions. (In the Newtonian
limit β → 1, Wic must diverge.) For example, for β =0.96, Wic lies between 80 and
82. Simulations for lower β , i.e. higher concentration, are not feasible at this point
owing to numerical instabilities. For b values not very far way from 1000, changing
the b parameter barely affects Wic. By changing the b parameter downward to 900,
Wic is almost unchanged. However, for further smaller b values, the dependence is
stronger and Wic increases with decreasing b.

As mentioned earlier, time-dependent instabilities have been observed in viscoelastic
stagnation-point flows in both opposed-jet and cross-slot geometries. In particular,
the birefringent stability found by Müller et al. (1988) is very similar to the one
reported in this paper. In their optical experiments with semi-dilute aPS solutions,
the width of the birefringent strand oscillates rapidly between two values in a certain
range of extension rate. Compared with their experiments, as well as the asymptotic
model of Harris & Rallison (1994), our simulation predicts a higher critical Wi. This
could be as least partially attributed to the low concentration we are looking at. In
the cross-slot geometry, time-dependent oscillations are found for De � 12.5 (Arratia
et al. 2006), which is of the same order-of-magnitude as what we have observed
(Dec ≈ 0.3Wic =19.5). Although symmetry is not imposed in our simulations, we do
not observe any symmetry-breaking instability, which according to the experiments
should occur at a much lower De. This might be related to the constant-pressure
constraints we applied on entrances and exits. In both the experiments (Arratia et al.
2006) and simulations (Poole et al. 2007) where asymmetry is observed, there are no
restrictions on the pressure at the boundaries and constant-flow-rate constraints are
applied instead.

3.3. Instability mechanism

We turn now to the spatiotemporal structure of the instability and its underlying
physical mechanism. We will denote the deviations in velocity, pressure and stress
with primes, while steady-state values will be denoted with a superscript ‘s’:

u = us + u′, (3.1)

p = ps + p′, (3.2)

α = αs + α′. (3.3)

Figures 10, 11 and 12 illustrate u′
x , u′

y and α′
xx , respectively, at intervals of 1/8 period,

corresponding to the periodic orbit at a Weissenberg number close to the bifurcation
point (Wi= 66). Time starts from an arbitrarily chosen snapshot on the periodic orbit
and only a quarter of the region near the stagnation point is shown; behaviour in the
rest of the domain can be inferred from the reflection symmetry across the axes.

At the beginning of the cycle (figure 10a), u′
x is positive in the region very close to

the stagnation point while it is negative in most of the downstream region. As time
goes on, this positive deviation near the stagnation point grows into a ‘jet’, a region of
liquid moving downstream away from the stagnation point faster than the steady-state
velocity, as shown in figures 10(b), 10(c) and 10(d). Correspondingly, by continuity,
the inflow toward the stagnation point is also faster, as shown in figures 11(a)–11(d).
Note that very near the stagnation point, deviations from steady state remain small.
At the beginning of the second half of the cycle (figure 10e), the jet extends further
downstream and grows to the full width of the channel. Meanwhile, in the region
closer to the stagnation point, velocity deviations drop (figures 10e, 11e) and start
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Figure 10. Perturbation of the x-component of velocity, u′
x with respect to steady state at the

periodic orbit: Wi= 66. The region shown is 0<x < 1, −1 <y < 0; the stagnation point is at
the top left-hand corner.
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Figure 11. Perturbation of the y-component of velocity, u′
y with respect to steady state at the

periodic orbit: Wi= 66. The region shown is 0<x < 1, −1 < y < 0; the stagnation point is at
the top left-hand corner.
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Figure 12. Perturbation of the xx-component of polymer conformation tensor, α′
xx with

respect to steady state at the periodic orbit: Wi= 66. The region shown is 0< x < 1, −1< y < 0;
the stagnation point is at the top left-hand corner. The edge of the steady-state birefringent
strand is the line y ≈ −0.05.
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to change sign (figures 10f, 11f ). Consequently, the growth of the jet ends and a
‘wake’, a region of fluid moving slower than the steady-state velocity, emerges from
the stagnation point (figures 10f–h and 11f–h). Similarly, as the wake grow larger,
velocity deviations near the stagnation point change signs and a new cycle starts
(figures 10a and 11a).

The velocity deviations are closely related with those of the stress field (figure 12).
Generally speaking, ‘jets’ are accompanied by negative α′

xx and thus thinning of the
birefringent strand and ‘wakes’ are associated with the birefringent thickening. The
largest deviations are found at the edges of the birefringent strand where ∂αs

xx/∂y is
largest. Note that deviations in the stress field are always small along the centreline
of the birefringent strand because there polymer molecules are almost fully stretched
and the huge spring force is sufficient to resist any perturbations.

We can see the small spatial oscillations in the stress field deviations, characterized
by alternating high and low stress stripes, along the outflow direction. These
oscillations, apparently unphysical and centred around zero, also exist along the biref-
ringence strand in steady-state solutions, though they are not easy to see from the
contours in figure 3 (c) as they are overwhelmed by the high tr(α) in the birefringent
strand. Unfortunately, as shown by Renardy (2006) and Thomases & Shelley
(2007), spatial non-smoothness is inevitable in numerical simulations of viscoelastic
extensional flow upon certain Wi owing to the singularities in stress gradients. These
singularities could not be fully resolved by any finite mesh size and this problem would
always show up in numerical solutions of high Wi viscoelastic stagnation-point flows.
However, we do not expect these oscillations to qualitatively affect our observations
for a couple of reasons. First, non-smoothness has been observed in our simulation
at Wi values much lower than the critical Wi of this instability. Secondly, observable
non-smoothness is always found some distance away from the stagnation point in the
downstream direction while the instability is dominated by the physics in the close
vicinity of the stagnation point and, since FENE-P is a convective equation, we do not
expect anything occurring downstream to affect upstream dynamics. Last, and most
importantly, simulations with different meshes display different mesh-size-dependent
stripes, while the nature of the instability remains virtually unchanged.

Insight into the mechanism of this instability can be gained by examining the
linearized equation for α′

xx:

∂α′
xx

∂t
= − 2

Wi

α′
xx

1 − tr(αs)/b
− 2

Wi

αs
xxtr(α

′)

b (1 − tr(αs)/b)2

− us
x

∂α′
xx

∂x
− us

y

∂α′
xx

∂y
− u′

x

∂αs
xx

∂x
− u′

y

∂αs
xx

∂y

+ 2αs
xx

∂u′
x

∂x
+ 2αs

xy

∂u′
x

∂y
+ 2α′

xx

∂us
x

∂x
+ 2α′

xy

∂us
x

∂y
. (3.4)

In the following analysis, terms on the right-hand side (RHS) of (3.4) are named
‘RHS∗’, where ‘∗’ is determined by the order of appearance on the RHS. Terms and
their physical meanings are summarized in table 1. To understand the mechanism
of the instability, magnitudes of these terms at the point (0, −0.05) are plotted as a
function of time during roughly a period in figure 13(b). Terms RHS3, RHS5, RHS8
and RHS10 are zero by symmetry and not plotted. This position is at the edge of the
birefringent strand and as shown in figure 12, it is also where significant deviations in
the stress field are observed. Time-dependent oscillations at other places, including off
the symmetry axis x = 0, have also been checked and nothing that would qualitatively
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Term Formula Physical significance

RHS1 − 2

Wi

α′
xx

1 − tr(αs)/b
Relaxation.

RHS2 − 2

Wi

αs
xxtr(α

′)

b (1 − tr(αs)/b)2
Relaxation.

RHS3 −us
x

∂α′
xx

∂x

Convection of conformation deviations by the steady-state
x-velocity.

RHS4 −us
y

∂α′
xx

∂y

Convection of conformation deviations by the steady-state
y-velocity.

RHS5 −u′
x

∂αs
xx

∂x

Convection of the steady-state conformation by x-velocity
deviations.

RHS6 −u′
y

∂αs
xx

∂y

Convection of the steady-state conformation by y-velocity
deviations.

RHS7 2αs
xx

∂u′
x

∂x
Stretching caused by deviations in the extension rate.

RHS8 2αs
xy

∂u′
x

∂y
Stretching caused by deviations in the shear rate.

RHS9 2α′
xx

∂us
x

∂x
Stretching caused by deviations in the extensional stress.

RHS10 2α′
xy

∂us
x

∂y
Stretching caused by deviations in the shear stress.

Table 1. Terms on the right-hand side of (3.4).
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Figure 13. Time-dependent oscillations at (0, −0.05). (a) Perturbations of variables
normalized by steady-state quantities; (b) magnitudes of terms on RHS of (3.4).

affect our analysis was seen. Correspondingly, deviations in polymer conformation,
inflow velocity and extension rate, normalized by steady-state values, are plotted in
figure 13(a).
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Figure 14. Schematic of instability mechanism (view of the lower half geometry). Thick arrows
represent net forces exerted by polymer molecules (dumbbells) on the fluid. (a) Thinning process
of the birefringent strand. (b) Re-thickening process of the birefringent strand.

Consistent with our earlier observations, deviations in the velocity field (u′
y and

∂u′
x/∂x) and deviations in stress field (α′

xx) are opposite in sign for most of the time
within the period. Among the terms plotted, RHS4, RHS6, RHS7 and RHS9 are
much larger than the relaxation terms, RHS1 and RHS2, and dominate the dynamics.
(Relaxation terms are large at the very inner regions of the birefringent strand and
that is why oscillations in the stress field there are barely noticeable.) Moreover,
RHS4, RHS6 and RHS9 are mostly in phase with α′

xx , and thus tend to enhance the
deviations while RHS7 is out of phase with α′

xx , and hence damps the deviations. It
is the joint effect of these competing destabilizing and stabilizing forces that gives the
oscillatory behaviour of the system. Finally, notice that among the three destabilizing
terms, RHS6 is the one that leads the phase and thus guides the instability.

Based on these observations from figure 13, a mechanism for the instability can
be proposed, which is illustrated schematically in figure 14. At the beginning of the
cycle (t = 0), u′

y is slightly above zero, indicating that the inflow speed is faster than
that in the steady state. As a consequence, RHS6 becomes negative first, followed by
RHS4 and RHS9. In particular, a faster incoming convective flow brings unstretched
polymer molecules toward the stagnation point (corresponding to RHS6), as depicted
in figure 14(a). These polymer chains have less time to be stretched and when they
reach the edges of the birefringent strand (e.g. dumbbell B), they are less stretched
compared with the steady state. As a result, fluid around dumbbell B has lower
stress than at the steady state, corresponding to a thinning of the birefringent strand.
Meanwhile, since dumbbell B contains smaller spring forces than its downstream
neighbours A and A′, the net forces (thick arrows) exerted by the polymer on the
fluid point outward, generating jets downstream from the stagnation point. (In other



Viscoelastic cross-slot flow instability 163

words, when the stress at the centre is lower, the net stress divergence points outward,
which increases momentum in the downstream directions.) By continuity, more fluid
has to be drawn toward the stagnation point and the initial deviation in u′

y is then
enhanced. However, as the flow speeds up in the vicinity of the stagnation point, the
extension rate also starts to increase. This effect (corresponding to RHS7) tends to
stretch polymer molecules more and stabilize the deviations, as shown in figure 13.
Eventually this effect will be able to overcome that of RHS6 as well as RHS4 and
RHS9 and the stress near the stagnation point starts to increase after it passes the
minimum at around t = 3.5, which causes a re-thickening of the birefringent strand
figure 14(b). By a similar argument to that above, dumbbell C has higher spring forces
than B and B′, the dumbbells which were passing near the centre when stress was at
minimum, and the net polymer forces point inward, which starts to suppress the jets.
Inflow velocity decreases as the birefringent strand thickens and this gives incoming
polymer molecules more time to be stretched, and further thickens the birefringent
strand. Eventually, αxx will return to the steady-state value at around t = 7.2. However,
since all the deviations are not synchronized, a negative deviation is found in uy and
an identical analysis with opposite signs can be made for the second half of the cycle.

Within this mechanism, a sharp edge of the birefringent strand, i.e. large magnitude
of ∂αxx/∂y (∼O(104) in our simulations), is required so that a small u′

y can give
a sufficiently large RHS6 to drive the instability. This is made possible by the
kinematics of the flow near the stagnation point, where the incoming polymer
molecules are strongly stretched within a short distance. Another similar effect is that
stress derivatives are stretched in the outgoing direction and thus greatly weakened
as fluid moves downstream; therefore, the instability is dominated by physics in the
vicinity of the stagnation point. In the earlier mechanism for the so-called ‘varicose
instability’, given by Harris & Rallison (1994), the importance of extensional stress
and flow kinematics, especially the role of convection of incoming molecules, was
also recognized. However, the picture described in their work is not the same as ours
owing to the simplifications in their model. Their linear stability analysis ignores the
x-dependence of the birefringent width whereas in our simulations, x-dependence of
the stress field is closely related to the changes in velocity field. Besides, their analysis
does not identify a restoring force for the deviations and the oscillatory behaviour
could not be explained.

4. Conclusions
Using a DEVSS/SUPG formulation of the finite-element method, we are able

to simulate viscoelastic stagnation-point flow and obtain steady-state and time-
dependent solutions at high Wi. For Wi � 1, a clear birefringent strand is observed.
The width of this birefringent strand increases with increasing Wi until Wi ≈ 40,
after which it declines gradually. This also results in a non-monotonic trend in the
modification of the velocity field.

At around Wi= 65, the steady-state solution loses stability and a periodic orbit
becomes the attractor in phase space. Flow motion of the periodic orbit is
characterized by time-dependent fluctuations, specifically, alternating positive (jet) and
negative (wake) deviations from the steady-state velocity in the regions downstream
of the stagnation point. A mechanism is proposed which, taking account of the
interaction between velocity and stress fields, is able to explain the whole process
of the oscillatory instability. Extensional stresses and their gradients, as well as the
flow kinetics near the stagnation points, are identified as important factors in the
mechanism. This mechanism is different from that of the ‘hoop stress’ instabilities,
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which occur in viscometric flows with curved streamlines, and we expect that this
mechanism could be extended to explain various instabilities occurring in viscoelastic
flows with stagnation points.

The authors would like to acknowledge financial support for this research from the
National Science Foundation and the Petroleum Research Fund, administered by the
American Chemical Society.
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